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Too many reports of associations between genetic variants
and common cancer sites and other complex diseases are
false positives. A major reason for this unfortunate situation
is the strategy of declaring statistical significance based on a
P value alone, particularly, any P value below .05. The false
positive report probability (FPRP), the probability of no true
association between a genetic variant and disease given a
statistically significant finding, depends not only on the ob-
served P value but also on both the prior probability that the
association between the genetic variant and the disease is
real and the statistical power of the test. In this commentary,
we show how to assess the FPRP and how to use it to decide
whether a finding is deserving of attention or “noteworthy.”
We show how this approach can lead to improvements in the
design, analysis, and interpretation of molecular epidemiology
studies. Our proposal can help investigators, editors, and read-
ers of research articles to protect themselves from overinter-
preting statistically significant findings that are not likely to
signify a true association. An FPRP-based criterion for decid-
ing whether to call a finding noteworthy formalizes the process
already used informally by investigators—that is, tempering
enthusiasm for remarkable study findings with considerations
of plausibility. [J Natl Cancer Inst 2004;96:434–42]

The genomic revolution presents exciting opportunities to
learn about the etiology of cancer and other complex diseases.
We now face the daunting task of searching through the stag-
geringly large number of genetic variants to identify the few
among them that are involved in the etiology of these diseases.

The high chance that an initial “statistically significant” find-
ing will turn out to be a false-positive finding, even for large,
well-designed, and well-conducted studies(1–8), is one symp-
tom of the problem we face. For example, Colhoun et al.(8)
estimated the fraction of false-positive findings in studies of
association between a genetic variant and a disease to be at least
.95. It is impossible, of course, to know the proportion of
apparent false-positive findings that are attributable to poor
study design [likely to be moderate(6,9)], population stratifica-
tion [likely to be low (6,10)], or low statistical power in studies
designed to replicate positive findings(7,11); however, even if
biases from all sources were completely eliminated, the chance
that there is no true association for most reports of association
between a genetic variant and disease with aP value just below
.05 would remain high(2,5,6,8).We call the probability of no
association given a statistically significant finding the false pos-
itive report probability (FPRP). The precise definition of FPRP
and the simple mathematics used in this article can be found in
the Appendix.

In the absence of bias, three factors determine the probability
that a statistically significant finding is actually a false-positive
finding. First is the magnitude of theP value (2,8,12–14).
Second, and less appreciated, is statistical power(2,8,14,15),
which is often low because, with few exceptions, the odds ratio
for genetic variants that are truly associated with a disease is less
than 2 or the genetic variant is uncommon. Third, but of primary
importance as we(6,14)and others(2,8,15,16)have noted, is the
fraction of tested hypotheses that is true. In this commentary, we
show how to 1) calculate FPRP from its three determinants and
2) develop a criterion based on the FPRP for evaluating whether
a study finding is noteworthy. We then demonstrate how this
approach can be used in the design, analysis, and interpretation
of molecular epidemiology studies.

ETIOLOGY OF FALSE-POSITIVE FINDINGS

Historical Overview of the False-Positive Problem

The earliest molecular epidemiology studies were designed to
test promising hypotheses. Although many of these studies were
small, most were designed to test hypotheses on the basis of
strong biologic evidence of the importance of particular genes
and, to a certain extent, on the function of particular genetic
variants, such as the role of the GSTM1 null(17) and NAT2
slow acetylation(18) genotypes in bladder cancer. Studying the
entire genome, regions of a chromosome, or even multiple genes
in a single pathway was not feasible. Now, however, technical
advances, including lower cost, reductions in quantity of DNA
required, high throughput platforms, and better annotation of
fine haplotype structures, are allowing investigators to move
beyond testing a handful of hypotheses in the most promising
single nucleotide polymorphisms (SNPs) of the most promising
candidate genes toward testing several haplotypes and SNPs in
thousands of genes whose functions remain obscure or un-
known. Even if a single SNP in any given gene is unlikely to be
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a cause of a complex disease, all the variants in all the genes in
toto might still contribute substantially to the etiology of the
disease. Thus, the challenge we now face is how to take advan-
tage of these technical opportunities in a way that accelerates the
identification and confirmation of the genetic causes of cancer
and, at the same time, minimizes the number of false-positive
findings and, in turn, their consequences.

Determinants of FPRP

Three factors determine the magnitude of the FPRP (see
equation 1 in Appendix): 1) prior probability � of a true asso-
ciation of the tested genetic variant with a disease, 2) � level or
observed P value, and 3) statistical power to detect the odds ratio
of the alternative hypothesis at the given � level or P value.
Statistical power is in itself based on sample size, frequency of
the at-risk genetic variant, and the specified odds ratio for the
presumed association under the alternative hypothesis. A high
FPRP (e.g., �.5) could be a consequence of any combination of
a low prior probability, low statistical power, or a relatively high
P value.

FPRP Under Different Scenarios

Current practice in molecular epidemiology studies is to set
an arbitrary value for the � level, usually .05, and to call an
association between a genetic variant and a disease with a P
value below � statistically significant. Fig. 1 shows that differ-
ences in the prior probability level over the range of three or
more orders of magnitude between the most likely and least
likely hypotheses that are typically tested have a large effect on
FPRP. With a moderate prior probability, FPRP can be high,
even for a study with reasonable statistical power, when the
observed P value is close to .05. Although a substantial reduc-
tion in the FPRP can be achieved for moderate to high prior
probabilities (i.e., 0.10–0.25) by increasing statistical power,
FPRP will be high for prior probabilities below 0.01, even with
the maximum statistical power of 1 (i.e., the blue curve on Fig.
1). The reduction in FPRP is small when statistical power is

higher than 0.8 and, accordingly, even when sample size is
increased dramatically, especially with low prior probabilities.
Therefore, increasing the number of case patients and control
subjects can reduce FPRP substantially with high prior proba-
bilities but provides only a marginal benefit when the prior
probability is low (Fig. 2). The frequency of the genetic variant
also affects statistical power and therefore FPRP. Fig. 3 shows
the FPRP in a study with 1500 case patients and 1500 control
subjects over a range of allele frequencies for three prior prob-
abilities when � � .05. When considering statistical power
against an odds ratio (equivalent to the risk ratio [RR] for a rare
disease) of 1.5, a lower statistical power for studying less com-
mon genetic variants results in a higher FPRP (see Appendix,
step 2 of spreadsheet).

A lower observed P value also reduces FPRP (Fig. 4). How-
ever, equal P values can correspond to very different FPRPs
because of the influences of prior probability and statistical
power on the FPRP. For example, in Fig. 4, a P value of .00024
would achieve an FPRP of 0.2 in a study of 1500 case patients
and 1500 control subjects; however, the identical P value in a
smaller study of 300 case patients and 300 control subjects
would have an FPRP of 0.72.

A large study can have much more statistical power than a
small study to achieve the FPRP required to declare a finding
noteworthy. For example, in Fig. 5, a study of 1500 case patients
has much more statistical power than a study of 300 case patients
to achieve an FPRP below 0.5.

The examples above demonstrate that the current practice of
a universal criterion for statistical significance based on rejection
of the null hypothesis at an � level of .05 is untenable across the
range of prior probabilities of a true association, even with a
maximum statistical power of 1. Hence, as we test ever less
likely hypotheses, even an infinitely large sample size does not,
by itself, substantially reduce FPRP.

Fig. 1. Effect of changes in prior probability and statistical power on false
positive report probability (FPRP) when the � level is .05. FPRP shown is for a
P value at or just below �; FPRP will be lower when the observed P value is
substantially below �. A low FPRP is achievable only for high prior probabil-
ities. Moreover, statistical power has an important impact on FPRP, except for
particularly high and low prior probabilities. For example, for a prior probability
of 0.1, the FPRPs are 0.69, 0.47, 0.36, and 0.31 for statistical powers of 0.2, 0.5,
0.8, and 1.

Fig. 2. Effect of sample size on false positive report probability (FPRP). In this
figure, allele frequency q � .3, � � .05, and statistical power is for detecting an
odds ratio of 1.5. FPRP shown is for a P value at or just below �; FPRP will be
lower when the observed P value is substantially below �. Prior probability and
N (numbers of case patients and control subjects) have a large effect on the
FPRP. FPRP remains very high with a low prior probability (.001). Increasing
the sample size beyond N � 1500 case patients and control subjects will have
only a marginal effect on FPRP because statistical power is already close to 1.
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USING AN FPRP CRITERION TO TEST THE

ASSOCIATION BETWEEN A GENETIC VARIANT OR

HAPLOTYPE AND DISEASE RISK

Analysis of a SNP

Above, we explored determinants of FPRP across a range of
scenarios. Now, we propose a four-step procedure in which a
decision on whether a given association between a SNP and a
particular disease is deserving of attention or is noteworthy.

1. Preset an FPRP noteworthiness value for each hypoth-
esis. A universal value for declaring a finding to be noteworthy
is probably not appropriate; the stringency of the FPRP value
should depend on statistical power (Fig. 5) and the magnitude of
the losses (negative consequences) from potentially wrong de-

cisions. Studies of rare tumors (e.g., childhood cancers) or small
initial studies of common tumors should probably have an FPRP
value of 0.5 or above; given that some estimates of the overall
FPRP in the molecular epidemiology literature have been near
0.95 (8), an FPRP value near 0.5 would represent a substantial
improvement over current practice. We believe that large studies
or pooled analyses that attempt to be more definitive evaluations
of a hypothesis should use a more stringent FPRP value, perhaps
below 0.2.

2. Determine the prior probability of the hypothesis be-
fore viewing study results. The prior probability of a hypoth-
esis can simply be the subjective answer to the question “What
is the probability of a meaningful association between a genetic
variant (for analysis of a SNP) or gene (for a haplotype analysis)
and a disease?” A meaningful elevation in odds ratio might be
defined as 1.5 or greater; however, in some situations, a lower
odds ratio can be defensible.

In the absence of epidemiologic data, determination of a prior
probability should integrate existing information from genomic
and functional data on the gene and the specific genetic variant.
For example, a SNP that results in a nonconservative change in
the coding region of a gene thought to play an important and
rate-limiting role in the pathogenesis of a disease would have a
higher prior probability than a synonymous SNP in a gene (19)
for which there is a redundant mechanism that could, at least in
part, compensate for the failure of one component of the system
(20). However, the relevance of the gene is usually more im-
portant than the type of SNP (16); even synonymous SNPs can
alter mRNA stability and gene expression (21) or can be in
linkage disequilibrium with a functionally important SNP.

One can use simple assumptions to determine a reasonably
low range for the prior probability that a randomly selected
nonsynonymous variant located within a gene is truly associated
with a complex disease (8). If the number of functional variants
in 30 000 known genes is between 50 000 and 250 000, and
between one and five SNPs contribute to the disease (22), the
prior probability might be set between 0.0001 and 0.00001. In

Fig. 4. Effect of sample size on the relation between the P value and false-
positive report probability (FPRP). FPRP is shown as a function of the P value
for two sample sizes, N � 300 and N � 1500, when the prior probability is
0.001, the allele frequency (q) is 0.3, and statistical power is shown to detect an
odds ratio of 1.5. The FPRP value can be very different even when the P value
and prior probability are the same because of differences in statistical power.

Fig. 3. False positive report probability (FPRP) as function of allele frequency
(q) of a high-risk allele for three prior probabilities. In this figure, � � .05, N �
1500 case patients and control subjects, and statistical power is calculated for
detecting an odds ratio of 1.5. FPRP shown is for a P value at or just below �;
FPRP will be lower when the observed P value is substantially below �. Allele
frequency affects FPRP through its effect on statistical power.

Fig. 5. Effect of decreasing the false positive report probability (FPRP) required
to declare a finding noteworthy on statistical power. Statistical power is shown
to detect an odds ratio of 1.5, with a prior probability of 0.001 and an allele
frequency (q) of .3 for 300 and for 1500 case patients and control subjects. Note
the trade-off between increased statistical power and a lowered FPRP for a fixed
sample size and the potential increase in statistical power with the same FPRP
but larger sample size.
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contrast, the prior probability that a variant of a gene with
functional data that is suggestive of a possible association,
perhaps from a knockout animal or in vitro observation, will be
truly associated with disease risk is likely to be in the 0.01–
0.001 range.

Existing epidemiologic data on the association or linkage
between the SNP or gene and disease should also influence the
prior probability. The quality of the studies (23) and the statis-
tical powers and P values of the tests should influence the weight
given to the epidemiologic evidence. Data from diseases with
possibly related etiologies can also be used. For example, the
prior probability for an association between a genetic variant and
ovarian cancer might be increased by evidence of an association
between the same genetic variant and breast cancer. Data, how-
ever, cannot “count” twice; in a meta-analysis, for example,
investigators must take special care that specification of the prior
probability is independent of the data to be used in the analysis.

Assigning a precise prior probability to a specific hypothesis
is neither possible nor, fortunately, required to use this approach.
Assigning a genetic variant to one of several ranges of prior
probabilities rather than to any specific value should be suffi-
cient to identify those findings that are likely to be robust. For
example, the range of each prior probability category could be
10-fold; in fact, simply designating a prior probability as high
(�0.1), moderate (�0.01), or low (�0.001) will be adequate for
many situations.

Alternatively, investigators who are uncomfortable with the
subjectivity of choosing a prior probability have additional op-
tions; they can start from empirical evidence of replication rates
in similar studies (3,4,7,8) and then increase or decrease the
presumed prior probability according to other available infor-
mation. In addition, investigators who are reluctant to specify a
prior probability can perform a simple sensitivity analysis of the
effect of a wide range of prior probabilities on FPRP (see
Appendix, step 2 of spreadsheet).

The practice of choosing a prior probability may not be quite
as unfamiliar as it seems. Investigators already informally use
prior probability to decide whether to launch a study, which
genes to study, and how to interpret the results. We believe that
formally developing prior probabilities before seeing study re-
sults can, in itself, lead to a substantial improvement in inter-
preting study findings over current scientific practice.

3. Specify the odds ratio and mode of inheritance for
which statistical power should be calculated. Until more as-
sociations between genetic variants and particular diseases are
replicated, we advocate using the statistical power to detect an
odds ratio of 1.5 for alleles with an elevated risk in FPRP
calculations [an odds ratio of 1.5 is a plausible value for impor-
tant biologic effects (17,18)]. The reduction in FPRP from
choosing an odds ratio above 1.5 will be small in situations
where increasing statistical power has little effect, such as when
the statistical power is already above 0.8 and the prior proba-
bility is much smaller than �. Statistical power and FPRP can be
adversely affected, however, by specifying an odds ratio closer
to 1.

If the SNP has an unknown function and there is no epide-
miologic data, there is little basis for specifying the mode of
inheritance in the statistical power calculation. Perhaps a dom-
inant mode is most reasonable, on the premise that the difference
between carrying one and two copies of the genetic variant is
likely to have less effect on the odds ratio than the difference

between carrying zero and one copy of the genetic variant.
Investigators may wish to evaluate whether changing the as-
sumed mode of inheritance greatly changes FPRP.

4. After completion of the study, determine whether the
finding is noteworthy. Using standard software, calculate the
odds ratio and 95% confidence interval (or odds ratio and P
value) for the association between the genetic variant and the
disease. Calculate FPRP from the observed P value, statistical
power, and prior probability by using the FPRP calculation
spreadsheet (see Appendix). Determine whether the estimated
FPRP value is below the prespecified FPRP value. In addition,
the reporting of FPRP values over a range of prior probabilities
can inform readers who assume a prior probability different
from the authors’ and can allow evaluation of the sensitivity of
the FPRP value to different assumed prior probabilities.

Calculating FPRP for an SNP From a Reported Odds
Ratio and Confidence Interval

The FPRP calculation spreadsheet (see Appendix) can help
reviewers, editors, and readers to calculate an FPRP value when
the P value or confidence interval for the odds ratio is available,
but the FPRP approach is not used. Investigations can use the
spreadsheet to determine for themselves whether to consider a
finding in the literature to be noteworthy with their own prior
probability.

Analysis of a Haplotype

Calculating FPRP when studying haplotypes requires some
additional considerations. Without knowledge of the function of
the SNPs in one or more haplotypes, the prior probability will
apply to the gene or locus as a whole and therefore would be
greater than the prior probabilities for each of the individual
SNPs (8). Accordingly, the P value can be obtained from an
omnibus test (24). In the omnibus test, the null hypothesis is that
the risk of the disease is the same for all haplotypes and the
alternative hypothesis is that the risk of the disease from at least
one haplotype is different from the others. Statistical power can
be obtained for an alternative hypothesis, such as an odds ratio
of 1.5 for carriers of one of the more frequent haplotypes, with
the most common haplotype as the referent.

DESIGN IMPLICATIONS: FPRP AND SAMPLE SIZE

Fig. 6 shows how FPRP considerations can be used to deter-
mine sample size. A sample size of several hundred case patients
and control subjects will achieve a statistical power of 0.8 to
detect an odds ratio of 1.5 for a genetic variant of moderate
frequency using an FPRP value of 0.2 when the prior probability
is 0.25. Interestingly, the sample sizes needed to achieve a low
FPRP with a high prior probability are similar to standard
sample size calculations with the same statistical power and an
� level of .05. For example, for q � .3 and a statistical power of
0.8 to detect an odds ratio of 1.5, the sample size required for an
FPRP of 0.2 with a prior probability of 0.25 is 389 (Fig. 6, brown
line), which is very close to 426, the standard sample size when
� � .05 (Fig. 6, black broken line).

EXAMPLE OF THE APPLICATION OF THE FPRP
APPROACH TO A REPORT IN THE LITERATURE

Kuschel et al. (25) recently reported results on 16 SNPs in a
total of seven genes involved in the repair of double-stranded
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DNA breaks and breast cancer from a case–control study of
2200 case patients and 1800 control subjects. Their article high-
lighted two polymorphisms in XRCC3, one polymorphism each
in XRCC2 and LIG4, and a haplotype analysis of XRCC3 based
on three SNPs. We use data from the Kuschel et al. article to
demonstrate application of our FPRP approach. In our analysis
of the Kuschel et al. data, we specified the FPRP value to be 0.5
because this value would provide high statistical power to find
important SNPs and because other large breast cancer studies in
the field will soon provide additional data addressing the con-
tribution of these genes.

To assign a prior probability for these genes, we consid-
ered a previous finding that genetic variation in BRCA2, a
DNA double-stranded repair gene, is associated with risk of
breast cancer (26). On the basis of evidence of an association
between genetic variation in the XRCC3 gene and other

tumors (27), specifically cutaneous melanoma and bladder
cancer, we assigned a relatively high prior probability range
(i.e., 0.01–0.1). We then developed a range of prior proba-
bilities for each of four genetic variants (outlined in Table 1)
by taking into account previous reports that genetic variants
in these specific genes are associated with other cancers, the
type of genetic variant and its location in a coding or non-
coding region, and functional data, if available. For each
genetic variant, the FPRP value was calculated using the
estimated prior probability range, the statistical power to
detect an odds ratio of 1.5 (or its reciprocal, 0.67), and
reported results (using estimated odds ratios and P values).
An FPRP calculation spreadsheet for one SNP under a dom-
inant mode of inheritance is shown in the Appendix.

Among the four genetic variants we considered, the FPRP
value for the A3G SNP at nt 17893 of XRCC3 was the only
FPRP value below .5 for the prior probabilities we chose (Table
1). The C3T SNP at nt 18067 of XRCC3 had a higher P value,
similar statistical power, and the same range of prior probabil-
ities as the A3G SNP at nt 17893 of XRCC3; thus, its FPRP
value is higher and less likely to represent a true association. We
would choose not to highlight the XRCC2 and LIG4 SNPs,
despite P values below .1, because of the high FPRP values that
would result, given our prior probability range. For high prior
probabilities, the LIG4 SNP result would have a much lower
FPRP value than the XRCC2 SNP, even though their reported P
values are similar. This situation is a consequence of the greater
statistical power to detect a noteworthy finding for the LIG4
SNP than the rarer XRCC2 SNP. Using Appendix Table 1,
investigators can assign their own range of prior probabilities to
the published data, choose an FPRP value for each genetic
variant, and perform a sensitivity analysis of the effects of prior
probability on FPRP.

Kuschel et al. (25) also used a haplotype analysis to investi-
gate the effect of the genetic variants in the XRCC3 gene on
breast cancer risk. They presented pair-wise odds ratios for

Fig. 6. Sample size needed to achieve a false positive report probability (FPRP)
value of 0.2 with various prior probabilities or with an � level of .05 (black
broken line) for traditional sample size (N) calculations. Sample size is shown
for various allele frequencies (q), with statistical power of 0.8 to detect an odds
ratio of 1.5.

Table 1. False positive report probability (FPRP) values for four results on associations between 16 variants in genes involved in the repair of double-stranded
DNA breaks and breast cancer based on data in Kuschel et al. (25)

Gene/SNP Odds ratio (95% CI)*

Statistical power
under recessive

model†
Reported
P value‡

Prior probability§

.25 .1 .01 .001 .0001 .00001

XRCC3 C3T at nt 18067 1.32 (1.08 to 1.60) 1.00 .015 .042 .12 .59 .94 .993 .9993
XRCC3 A3G at nt 17893 0.82 (0.72 to 0.94)� .9895 .0075 .022 .064 .43 .88 .987 .9987
LIG4 T3C at nt 1977 0.65 (0.42 to 0.98) .87 .088 .23 .48 .91 .990 .9990 1.00
XRCC2 G3A at nt 31479 2.60 (1.00 to 6.73) .17 .071 .56 .79 .98 .998 .9998 1.00
XRCC3 haplotype 1.00¶ .000016# .000049 .00015 .0016 .016 .14 .62

*Odds ratios, except as noted, were calculated for the homozygotes with rare genetic variants versus the referents for homozygotes with common genetic variants,
as reported in Table 2 of (25). CI � confidence interval. SNP � single-nucleotide polymorphism.

†Statistical power, except as noted, is the power to detect an odds ratio of 1.5 for the homozygotes with the rare genetic variant (or, 0.67 � 1/1.5 for protective
effect) and 1 for the heterozygotes and for the homozygote with the common variant, with an � level equal to the reported P value.

‡P values were calculated using the omnibus chi-square test, with two degrees of freedom, as reported in Table 2 of (25). The FPRP values are based on these
P values.

§The most likely range of prior probabilities are in bold type for each gene/SNP or haplotype. The prior probability is for an effect of the gene/SNP in the direction
of the observed odds ratio.

�Odds ratios were calculated for the heterozygotes with the genetic variants versus the referent for the homozygotes with the common genetic variants, as reported
in Table 2 of (25).

¶Statistical power to reject the null hypothesis using the omnibus chi-square test, when the odds ratio is 1.5 for the second most frequent haplotype and 1 for the
other haplotypes, with the most common haplotype as referent.

#P value was calculated using the omnibus chi-square test, with seven degrees of freedom.
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seven haplotypes against an arbitrary baseline, but we prefer to
analyze the haplotype data with an omnibus chi-square test (24),
which gives a value of 34 with seven degrees of freedom for a
P value of .000016 (Table 1). The FPRP value is very low for
this prior probability range and is quite robust even for low prior
probabilities—that is, the FPRP value remains below 0.5 even
for a prior probability of 0.0001. This interpretation suggests
that the XRCC3 gene may contain one or more genetic variants
that increase breast cancer risk.

DISCUSSION

Molecular epidemiology studies are poised to take advantage
of cheaper, faster laboratory platforms that enable analysis of
many SNPs in more genes. However, continued reliance on the
standard P value criterion of .05 to define statistical significance
without consideration of power or prior probability will over-
whelm us with too many false positives. Clearly, we need a new
approach for deciding which findings to highlight among the
results. Using a much lower P value based on multiple compar-
ison corrective procedures would result in unnecessarily low
power for hypotheses with high prior probabilities and for stud-
ies of diseases where collection of large numbers of cases is not
feasible. Restricting ourselves to evaluation of the more plausi-
ble hypotheses would eliminate the opportunity for new, unpre-
dictable discoveries among thousands of genes and SNPs. By
contrast, we propose that the decision about whether to call a
finding noteworthy or deserving of attention be made directly on
the estimated probability that the finding does not represent a
real association. Thus, our approach allows the prior probability
of the hypothesis, the power of the study, and the tolerance for
a false-positive decision, as well as the P value, to play a role in
deciding whether a finding is noteworthy.

The FPRP approach is essentially Bayesian in that it formally
integrates data from direct observation of study results with
other information about the likelihood of a true association.
Most Bayesian approaches focus on the posterior distribution of
the odds ratio; however, by contrast, the FPRP approach retains
the familiar dichotomy of findings (8,28) into those that are
noteworthy and those that are not. Furthermore, unlike most
Bayesian approaches, the FPRP approach does not require spec-
ification of a prior probability distribution for the odds ratio,
which is a more challenging task than specification of only a
prior probability, especially when so little is known about many
of the SNPs that are studied. In addition, FPRP and the com-
plement of posterior probability (obtained from a Bayesian anal-
ysis) are both conditional probabilities of no association; how-
ever, they are conditional on different data. That is, FPRP is
conditional on the finding meeting a criterion for being called
noteworthy and is not defined otherwise, but the complement of
the posterior probability is conditional on all the data and is
always defined. In addition, our calculation of FPRP is specific
to the alternative hypothesis, including mode of inheritance and
specific odds ratios, for which statistical power is calculated. In
our view, despite some important advantages of the Bayesian
approach, evaluation of evidence using the FPRP approach is
simpler to understand and requires fewer assumptions and less
technical expertise than standard Bayesian approaches; there-
fore, the FPRP approach seems more likely to be quickly
adopted and uesd by investigators.

One potential limitation to the FPRP approach is the chal-
lenge of assigning a range for prior probability. However, in-
vestigators informally use prior probabilities already to decide
which experiments to perform, which studies to field, and which
specific hypotheses to test in those studies, and for interpreting
results. With more experience, investigators should be better
able to determine a prior probability. In the meantime, however,
a crude classification of prior probabilities into low, medium,
and high or a sensitivity analysis of FPRP across a range of prior
probabilities should be an improvement over the current practice
of relying entirely on statistical significance. An additional im-
portant benefit of considering prior probability is that investiga-
tors are forced to evaluate the existing evidence before seeing
the results of their own study.

Requiring replication of a first statistically significant associ-
ation in a second study before a finding is considered to be real
can also reduce the percentage of false positives. It is a partic-
ularly useful strategy when false positives are likely to be due to
bias in design or poor fieldwork. If, however, one assumes that
the results from more than one study are all valid and can be
combined, then using separate tests of statistical significance is
not the optimal way to make a decision based on the available
data. The FPRP approach, in contrast, is suitable for results from
a pooled analysis or a meta-analysis, just as it is for an individual
study.

Several other analytic methods to reduce the numbers of
false-positive findings have been used or proposed. Bonferroni
correction, discussed by Risch and Merikangas (29), and some-
what more powerful false discovery rate methods (30,31) lower
the � level on the basis of the total number of tests performed,
so that the probability that any true null hypothesis is rejected is
maintained at a specified value, typically .05. Colhoun et al. (8)
recently recommended reducing the standard value of statistical
significance (i.e., the � level) from .05 to .0005 or .00005 to
achieve a ratio of true-positive to false-positive reports of 20:1,
under the assumption (based on empirical evidence of replica-
tion fractions) that .02 is a realistic prior probability. Standard
Bayes and empirical Bayes methods yield a posterior distribu-
tion. Most empirical Bayes methods use the empirical distribu-
tion of odds ratios for each of the SNPs to determine a prior
probability without considering that some SNPs are more likely
than others to be associated with disease; however, some meth-
ods (32) do allow prior probabilities to differ.

The most important advantage of the FPRP approach over
alternative non-Bayesian analytic methods is that it directly
addresses the concern in the literature over too many false-
positive reports (1). Thus, the decision of whether an association
between a genetic variant and a disease is noteworthy depends
on both prior probability and statistical power, in addition to the
P value. We consider setting a low � level to be an indirect and
inferior means to achieve the desired end of a low FPRP,
because an FPRP can be high even for a low observed P value
when the prior probability is low. Moreover, insisting on a very
low P value before any finding is considered statistically signif-
icant may unnecessarily reduce statistical power when the prior
probability is high, thereby constraining research on diseases
with rare genetic variants or on diseases for which studies with
large sample sizes are unrealistic. By contrast, the FPRP ap-
proach allows even relatively small studies or analyses of asso-
ciations of rare genetic variants and diseases to make contribu-
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tions to the field by providing a way for their results to be
carefully and judiciously considered.

The flexibility of the FPRP approach provides several bene-
fits. First, the FPRP approach is especially helpful for hypothe-
ses with low prior probability, including broad data-mining
efforts, such as whole genome scans, subgroup analyses, and
tests for gene–gene and gene–environment interactions, because
it can lead to more cautious interpretation of surprising findings.
Second, an investigator can allow statistical power and loss from
false-positive and false-negative decisions to influence the FPRP
criterion for noteworthiness. Third, investigators can consider
the false-negative report probability (Wacholder S: unpublished
data), the probability of a true association between a genetic
variant and a disease given a finding that is not considered
noteworthy, when deciding whether further investigation is still
warranted. Finally, FPRP integrates the evidence for each hy-
pothesis individually, without being influenced by extraneous
factors, such as how many (33) or which other hypotheses are
also being evaluated. In fact, a generalization allowing correla-
tions between pairs of prior probabilities would allow the effects
of genetic variants in the same pathway, such as the repair of
double-stranded DNA breaks, to be correlated, thereby increas-
ing or decreasing the FPRP for one genetic variant according to
the apparent strength of the association between a disease and
another genetic variant in the same pathway.

Focusing on FPRP helps to illuminate issues in the study
design, analysis, and interpretation of molecular epidemiology
studies. Until now, investigators have almost universally de-
noted findings as “statistically significant” or “noteworthy,” in
the usual senses of the words, on the basis of a statistical test
with an � level of .05. Indeed, this strategy is effective when the
prior probability of the primary hypothesis of an epidemiologic
study or clinical trial is sufficiently high to justify a study on its
own. For example, in a study with a statistical power of 0.8, the
FPRP values when the P value is just under .05 would be 0.06
(for a prior probability of 0.5) and 0.36 (for a prior probability
of 0.1). With recent advances in technology, however, high-
throughput, low-cost genotyping can justify initiation of molec-
ular epidemiology studies designed to evaluate many SNPs,
even when the prior probabilities for most or all of the individual
hypotheses are low.

Most immediately, the FPRP approach offers guidelines for
publication and interpretation of study results. It provides a way
for editors and readers of articles to protect themselves from
being misled by statistically significant findings that do not
signify a true association. Furthermore, the FPRP framework for
interpreting initial findings can guide investigators’ decisions
about whether to attempt to replicate molecular epidemiologic
studies or to increase their understanding of the disease mech-
anism through development of in vitro model systems. Finally,
the FPRP approach helps to formalize what investigators have

always done informally—that is, tempering enthusiasm for sur-
prising study findings with consideration of plausibility.

APPENDIX

What Is False Positive Report Probability?

To understand False Positive Report Probability (FPRP), first con-
sider the four joint probabilities defined by the truth or falsity of the null
hypothesis (H0), crossed with the decision resulting from a statistical
test T of H0. We assume that the measure of association, the odds ratio
or relative risk (RR), takes on one of two possible values, RR0 � 1
under the null hypothesis of no association between the genetic variant
(G) and disease (D) and RRA under the alternative hypothesis (HA).

Classical frequentist statistical theory, which is most commonly
taught in applied biostatistics courses, does not specifically address
these probabilities. In classical theory, the truth of H0 and HA is
considered unknown, not random. Therefore, we must go outside clas-
sical theory to consider H0 and HA probabilistically. We define the prior
probability (�) as � � Pr(HA is true). We use the frequentist concepts
of statistical size (i.e., probability of rejection under the null hypothesis)
and statistical power in this formulation. A statistical test T has statis-
tical size � for testing H0 when rejection of H0 is defined as T�z� and
Pr(T�z� � H0 is true) � Pr(rejecting H0 � HA is false) � �. Statistical
power is denoted by 1 � �, with Pr(T�z� � H0 is false) � Pr(rejecting
H0 � HA is true) � 1 � � or the probability of rejecting when the
alternative hypothesis HA is true. Note that statistical power is reduced
when a lower, more stringent statistical size � and a greater z� are used.

We define FPRP for standard statistical significance testing as
Pr(H0 is true � association is deemed statistically significant) �
Pr(H0 is true � T�z�), where z� is the � point of the standard normal
distribution. The distinction between � level, statistical size, and
FPRP is crucial; � level is the probability of a statistically significant
finding, given that the null hypothesis is true, whereas FPRP is the
probability that the null hypothesis is true, given that the statistical
test is statistically significant.

Appendix Table 1 presents the joint probabilities of statistical sig-
nificance of a single test of association and truth of the alternative
hypothesis when one SNP is chosen randomly for testing.

Thus,

FPRP � �(1 � �)/[�(1 � �) � (1 � �)�]

�1/{1 � [�/(1 � �)][(1 � �)/�]} [1]

One can see from this equation that FPRP is always high when � is
much greater than �, and even more so when 1 � � is low.

To illustrate this point, consider the probability that a positive
finding is false in an analysis of the association between a disease and
a randomly selected SNP from a panel of 1000 SNPs available for
testing. Allow the statistical test to have a maximum power of 1 and a
standard � level of .05 (Appendix Table 2). If only one of these 1000
SNPs is known to be associated with the disease (i.e., � � .001), then
the probability of both a true association and rejection of the test of
association is .001 � (.001 	 1), and the probability that there is both
no association and rejection of the null hypothesis is .04995 � .999 	

Appendix Table 1. Joint probability of significance of test and truth of hypothesis

Truth of alternative hypothesis

Significance of test

TotalSignificant Not significant

True association (1 � �)� [True positive] �� [False negative] �
No association �(1 � �) [False positive] (1 � �) (1 � �) [True negative] 1 � �

Total (1 � �)� � �(1 � �) �� � (1 � �) (1 � �) 1
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.05; the total probability of rejection is .05095 � (.001 � .04995). Thus,
there is only a 2% chance that the statistically significant finding will
represent a true association—that is, conditional on rejection of the test;
there remains a 98% chance that there is no association (FPRP � 0.98
� 0.04995/0.05095). In contrast, if 500 of the 1000 SNPs were known
to be associated with the disease (i.e., � � 0.5), then the FPRP would
be below 5%, and a statistically significant finding would have a 95%
probability of representing a true association.

Technical Points on Design and Data Analysis Using
FPRP Value

In the FPRP-based analytical approach described in this commen-
tary, the FPRP value is calculated from the prior probability, statistical
power, and observed P value by substituting the P value in place of �
in the right-hand side of equation 1. If the FPRP value is below a preset
FPRP value (F), the association between the genetic variant and the
disease is deemed noteworthy. Just as the P value is the lowest � level
at which a test would be deemed statistically significant, the FPRP value
is the lowest FPRP value at which a test would yield a noteworthy
finding.

To consider the statistical power of a test of the null hypothesis,
where the relative risk is RR � RR0 � 1 versus the alternative
hypothesis RR � RRA, we first assume that the estimate of RR is
normally distributed with a variance 
2. We calculate the statistical
power (1 � �) of a procedure that determines a finding to be notewor-
thy (rejects the null hypothesis) when the FPRP value is below the
preset FPRP value for a given prior probability (�). To do this calcu-
lation, we note that statistical power (1 � �) depends on � and must
satisfy the following equation:

1 � � � � �
log(RRA/RR0)]/
} � z�/2, [2]

where � is the cumulative distribution function of the standard normal
distribution, and z�/2 is the �/2 point of the standard cumulative normal
distribution. Equation 2 is the standard formula for the statistical power
of a test with an alternative hypothesis that the odds ratio equals RRA.
Equation 2 can be re-expressed in terms of genotype frequency and
number of case patients and control subjects (N) as 1 � � � �[N(q1
� q0)2)/(2(1 � q)q)]0.5 � z�/2, where q0 is the fraction of control
subjects with a higher-risk genotype, q1 � q0(RRA)/[1 � q0(RRA � 1)],
the fraction of case patients with a higher-risk genotype, and q � (q1 �
q0)/2.

When calculating FPRP value for a report, 
 and z�/2 in equation 2
are replaced by the standard error (SE) of the log–odds ratio estimate
and the two-sided P value point of the standard normal distribution,
respectively. Even when SE is not available directly, SE can still be
obtained when the 1 � �% confidence interval (CIU to CIL) for the odds
ratio are given: SE � [log(CIU � CIL)]/(2z�/2), where log is the natural
logarithm function. For example, the denominator, 2z�/2, is 2 	 1.96
when � � .05.

Representation of FPRP Calculation Spreadsheet

An Excel spreadsheet to calculate FPRP is included with the online
material (see http://jncicancerspectrum.oupjournals.org/jnci/content/
vol96/issue6). In the representation of the spreadsheet below, input data

are used to implement the method. Input data are italicized, and output
data are bold. The odds ratio (OR) and confidence interval (CI) in step
4 are from Kuschel et al. (25). Note that the numbers in the commentary
and in the FPRP calculation spreadsheet below were obtained by
programs written in MatLab (The MathWorks, Natick, MA) and Excel
(Microsoft, Redmond, WA), respectively.

Step 1. Preset an FPRP value for noteworthiness.
FPRP value: 0.5
Step 2. Enter up to six values for the prior probability that there is

an association between the genetic variant and the disease.
Prior probability 1: .25
Prior probability 2: .1
Prior probability 3: .01
Prior probability 4: .001
Prior probability 5: .0001
Prior probability 6: .00001
Step 3. Enter up to three values of odds ratio that are plausible

values for a noteworthy finding, assuming that there is a non-null
association under a dominant model. Odds ratio 1: 1.2, statistical power
� .179; odds ratio 2: 1.5, statistical power � .904; odds ratio 3: 2.0,
statistical power � 1.000.

Step 4. Enter odds ratio estimate and 95% confidence interval to

obtain FPRP value. OR � 1.316; 95% CI � 1.08 to 1.60; log(OR) �
.275; SE[log (OR)] � .100; P value � .006. FPRP values are shown in
Appendix Table 3.
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